Abstract

The effect of rotation on the Jeans instability of a self-gravitating viscoelastic fluid has been investigated using generalized hydrodynamic fluid equations. A dispersion relation is obtained using the linearized perturbation equations and normal mode analysis which is discussed for directions of rotation parallel and perpendicular to the wave propagation in classical (hydrodynamic) as well as kinetic limits. The Jeans criterion of instability is also obtained and it is found that it is unaffected by the presence of rotation in both the classical hydrodynamic and kinetic limits. The effects of Mach number, shear viscosity, sound velocity and rotation on the growth rate of the Jeans instability are also discussed numerically and we found that the shear viscosity and rotation have stabilizing influences on the growth rates of instability in both perpendicular and parallel propagations with finite angular rotation frequency. The stability of the rotating viscoelastic fluid is discussed using the Routh-Hurwitz criterion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.