Abstract

SummaryIn this paper, the power allocation problem in a wireless sensor network (WSN) with binary distributed detection is considered. It is assumed that the sensors independently transmit their local decisions to a fusion center (FC) through a slow fading orthogonal multiple access channel (OMAC), where, in every channel, the interferences from other devices are considered as correlated noises. In this channel, the associated power allocation optimization problem with equal power constraint is established between statistical distributions under different hypotheses by using the Jeffrey divergence (J‐divergence) as a performance criterion. It is shown that this criterion for the power allocation problem is more efficient compared to other criteria such as mean square error (MSE). Moreover, several numerical simulations and examples are presented to illustrate the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.