Abstract

While convolutional neural network (CNN)-based pedestrian detection methods have proven to be successful in various applications, detecting small-scale pedestrians from surveillance images is still challenging. The major reason is that the small-scale pedestrians lack much detailed information compared to the large-scale pedestrians. To solve this problem, we propose to utilize the relationship between the large-scale pedestrians and the corresponding small-scale pedestrians to help recover the detailed information of the small-scale pedestrians, thus improving the performance of detecting small-scale pedestrians. Specifically, a unified network (called JCS-Net) is proposed for small-scale pedestrian detection, which integrates the classification task and the super-resolution task in a unified framework. As a result, the super-resolution and classification are fully engaged, and the super-resolution sub-network can recover some useful detailed information for the subsequent classification. Based on HOG+LUV and JCS-Net, multi-layer channel features (MCF) are constructed to train the detector. The experimental results on the Caltech pedestrian dataset and the KITTI benchmark demonstrate the effectiveness of the proposed method. To further enhance the detection, multi-scale MCF based on JCS-Net for pedestrian detection is also proposed, which achieves the state-of-the-art performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.