Abstract

Jasmonates (JA) are well-known phytohormones which play important roles in plant development and defense against pathogens. Jasmonate ZIM domain (JAZ) proteins are plant-specific proteins and act as transcriptional repressors of JA-responsive genes. JA regulates both biotic and abiotic stress responses in plants; however, its role in nutrient deficiency responses is very elusive. Although, JA is well-known for root growth inhibition, little is known about behavior of JAZ genes in response to nutrient deficiencies, under which root architectural alteration is an important adaptation. Using protein sequence homology and a conserved-domains approach, here we identify 10 novel JAZ genes from the recently sequenced Chickpea genome, which is one of the most nutrient efficient crops. Both rice and chickpea JAZ genes express in tissue- and stimuli-specific manners. Many of which are preferentially expressed in root. Our analysis further showed differential expression of JAZ genes under macro (NPK) and micronutrients (Zn, Fe) deficiency in rice and chickpea roots. While both rice and chickpea JAZ genes showed a certain level of specificity toward type of nutrient deficiency, generally majority of them showed induction under K deficiency. Generally, JAZ genes showed an induction at early stages of stress and expression declined at later stages of macro-nutrient deficiency. Our results suggest that JAZ genes might play a role in early nutrient deficiency response both in monocot and dicot roots, and information generated here can be further used for understanding the possible roles of JA in root architectural alterations for nutrient deficiency adaptations.

Highlights

  • Jasmonates (JAs) form a family of oxylipin phytohormones, derived from oxidation of 18 and 16 carbon tri-unsaturated fatty acids (Wasternack and Kombrink, 2010)

  • In chickpea, we identified 10 Jasmonate ZIM domain (JAZ) proteins using the protein blast and Hidden Markov Model (HMM) searches

  • Chromosomal positioning of CaJAZ genes showed that CaJAZ10 was present on chromosome 2, CaJAZ3b on chromosome 6, CaJAZ6 on chromosome 7 while three genes, CaJAZ1b, CaJAZ12b, and CaJAZ3a were present on chromosome 8 (Table 1)

Read more

Summary

Introduction

Jasmonates (JAs) form a family of oxylipin phytohormones, derived from oxidation of 18 and 16 carbon tri-unsaturated fatty acids (Wasternack and Kombrink, 2010) These phytohormones are known to regulate a wide-range of processes including spikelet development (Cai et al, 2014), senescence (He et al, 2002), root growth (Staswick et al, 1992), communication (both interplant and intra-plant for defense) (Okada et al, 2014) and defense responses against biotic stress (Feys et al, 1994) through degradation of JA signaling repressor proteins (JAZs) (Kazan and Manners, 2012). JA-Isoleucine (JA-Ile), a bioactive form of JA, binds to its receptor complex consisting of CORONATINE-INSENSITIVE1 (COI1), an F-box E3-ubiquitin ligase protein and JAZ repressor (Yan et al, 2009). TPL recruits Histone Deacetylases (HDA6 & HDA19) which further suppress the gene expression via chromatin remodeling (Zhou et al, 2005; Wu et al, 2008)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call