Abstract

Jaynes-Cummings model is a typical model in quantum optics and has been realized with various physical systems (e.g, cavity QED, trapped ions, and circuit QED etc..) of two-level atoms interacting with quantized bosonic fields. Here, we propose a new implementation of this model by using a single classical laser beam to drive an electron floating on liquid Helium. Two lowest levels of the {\it vertical} motion of the electron acts as a two-level "atom", and the quantized vibration of the electron along one of the {\it parallel} directions, e.g., $x$-direction, serves the bosonic mode. These two degrees of freedom of the trapped electron can be coupled together by using a classical laser field. If the frequencies of the applied laser fields are properly set, the desirable Jaynes-Cummings models could be effectively realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.