Abstract
Carbon emissions from the aviation sector are expected to double during the coming three decades as the sector expands rapidly. Besides, the fluctuation of conventional fuel prices continues to obstruct the establishment of stable commercial strategies for the airlines. Meanwhile, Jet Biofuel (JBF) has been identified as a reliable alternative to conventional Jet-A fuel. Amongst the tested promising feedstocks for JBF production, Jatropha oil has gained growing attention and is believed to play a key role in the JBF industry. Though, no in-depth reviews on Jatropha JBF are found in literature, it is believed that there is a need to evaluate Jatropha as feedstock for JBF production after over 10 years of intensive research. Therefore, this article presents a comprehensive state-of-the-art review of Jatropha JBF production. The article offers a thorough review of the hydroprocessing of Jatropha by investigating its optimum operating conditions, recent catalyst application developments, the feasibility of JBF, its performance and environmental impact. This study concludes that Jatropha JBF production by hydroprocessing can achieve up to a 75% reduction in greenhouse gas emissions relative to Jet-A. While Jatropha JBF can be produced with a levelised cost as low as $0.6/kg. The main challenges facing Jatropha JBF industry has been identified to be the availability of feedstock and achieving a competitively priced JBF. As such, alternative routes to utilise the remaining parts of the Jatropha fruit into JBF production are proposed to reduce the land footprint, enhance JBF yield and minimise its selling price. The proposed pathways are expected to achieve a significant fuel yield increment of 24–89% as compared to utilising Jatropha oil alone, which remain to be evaluated in terms of technical and economic aspects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.