Abstract

Alpha-1-syntrophin (SNTA1) is emerging as a novel modulator of the actin cytoskeleton. SNTA1 binds to F-actin and regulates intracellular localization and activity of various actin organizing signaling molecules. Aberration in syntrophin signaling has been closely linked with deregulated growth connected to tumor development/metastasis and its abnormal over expression has been observed in breast cancer. In the present work the effect of jasplakinolide, an actin-binding cyclodepsipeptide, on the SNTA1 protein activity and SNTA1 mediated downstream cellular events was studied in MDA-MB-231 breast cancer cell line. SNTA1 protein levels and phosphorylation status were determined in MDA-MB-231 cells post jasplakinolide exposure using western blotting and immunoprecipitation techniques respectively. MDA-MB-231 cells were transfected with WT SNTA1 and DM SNTA1 (Y215/229 phospho mutant) and simultaneously treated with jasplakinolide. The effect of jasplakinolide and SNTA1 protein on cell migration was determined using the boyden chamber assay. Jasplakinolide treatment decreases proliferation of MDA-MB-231 cells in both dose and time dependent manner. Results suggest that subtoxic doses of jasplakinolide induce morphological changes in MDA-MB-231 cells from flat spindle shape adherent cells to round weakly adherent forms. Mechanistically, jasplakinolide treatment was found to decrease SNTA1 protein levels and its tyrosine phosphorylation status. Moreover, migratory potential of jasplakinolide treated cells was significantly inhibited in comparison to control cells. Our results demonstrate that jasplakinolide inhibits cell migration by impairing SNTA1 functioning in breast cancer cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.