Abstract

Within their environment, plants interact with a wide range of microorganisms, some of which are pathogenic and cause disease, and others that are beneficial and stimulate plant growth or activate natural defenses. To recognize and respond to this variety of pathogenic and beneficial microorganisms, plants have developed sophisticated strategies to “perceive” microorganisms and translate that “perception” into an appropriate adaptive response. This plant innate immune response is surprisingly complex and highly flexible in its capacity to recognize and respond to different invaders. Jasmonic acid and derivatives, collectively called jasmonates (JAs), have emerged as important signals in the regulation of plant responses to pathogenic and beneficial microorganisms. The complex interplay of JAs with the alarm signals salicylic acid (SA) and ethylene (ET) provides plants with a regulatory potential that shapes the ultimate outcome of the plant-microbe interaction. In this review, we present an overview of the key role of JAs in basal and induced resistance to pathogens, their possible implication in the establishment and functioning of beneficial plant-microbe associations; and our current knowledge on how the JA signaling pathway cross-communicates with SA- and ET-dependent signaling pathways to fine-tune defense.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call