Abstract

BackgroundAdventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The same IBA + Kin-treatment induces AR-formation in thin cell layers (TCLs). Auxin is the main inducer of AR-formation and xylogenesis in numerous species and experimental systems. Xylogenesis is competitive to AR-formation in Arabidopsis hypocotyls and TCLs. Jasmonates (JAs) negatively affect AR-formation in de-etiolated Arabidopsis seedlings, but positively affect both AR-formation and xylogenesis in tobacco dark-grown IBA + Kin TCLs. In Arabidopsis the interplay between JAs and auxin in AR-formation vs xylogenesis needs investigation. In de-etiolated Arabidopsis seedlings, the Auxin Response Factors ARF6 and ARF8 positively regulate AR-formation and ARF17 negatively affects the process, but their role in xylogenesis is unknown. The cross-talk between auxin and ethylene (ET) is also important for AR-formation and xylogenesis, occurring through EIN3/EIL1 signalling pathway. EIN3/EIL1 is the direct link for JA and ET-signalling. The research investigated JA role on AR-formation and xylogenesis in Arabidopsis dark-grown seedlings and TCLs, and the relationship with ET and auxin. The JA-donor methyl-jasmonate (MeJA), and/or the ET precursor 1-aminocyclopropane-1-carboxylic acid were applied, and the response of mutants in JA-synthesis and -signalling, and ET-signalling investigated. Endogenous levels of auxin, JA and JA-related compounds, and ARF6, ARF8 and ARF17 expression were monitored.ResultsMeJA, at 0.01 μM, enhances AR-formation, when combined with IBA + Kin, and the response of the early-JA-biosynthesis mutant dde2–2 and the JA-signalling mutant coi1–16 confirmed this result. JA levels early change during TCL-culture, and JA/JA-Ile is immunolocalized in AR-tips and xylogenic cells. The high AR-response of the late JA-biosynthesis mutant opr3 suggests a positive action also of 12-oxophytodienoic acid on AR-formation. The crosstalk between JA and ET-signalling by EIN3/EIL1 is critical for AR-formation, and involves a competitive modulation of xylogenesis. Xylogenesis is enhanced by a MeJA concentration repressing AR-formation, and is positively related to ARF17 expression.ConclusionsThe JA concentration-dependent role on AR-formation and xylogenesis, and the interaction with ET opens the way to applications in the micropropagation of recalcitrant species.

Highlights

  • Adventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation

  • Submicromolar MeJA concentrations reduce hypocotyl growth and enhance AR formation in indole-3-butyric acid (IBA) + Kin-grown Wild type (WT) seedlings and Jasmonic acid (JA)-mutants, except for coi1–16 The effect of exogenous MeJA was evaluated in mutants blocked in early and late steps of JA-biosynthesis, and in JA-signalling grown in the presence of the environmental, hormonal, and culture conditions necessary for AR-formation in thin cell layer (TCL)

  • In conclusion, results collectively uncover a critical function of the crosstalk between JA and ET-signalling in the auxin-induced AR-formation occurring under darkness in intact hypocotyls and in the in vitro cultured TCLs, involving a competitive modulation of xylogenesis (Fig. 12)

Read more

Summary

Introduction

Adventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The research investigated JA role on AR-formation and xylogenesis in Arabidopsis dark-grown seedlings and TCLs, and the relationship with ET and auxin. The stem endodermis is the founding tissue of ARs in Arabidopsis dark-grown thin cell layer (TCL) explants cultured with indole-3-butyric acid (IBA, at 10 μM) with/without cytokinin [kinetin (Kin) at 0.1 μM] [6, 7]. AR-formation from intact dark-grown hypocotyls and TCLs of Arabidopsis is enhanced by the same IBA + Kin treatment [8], and is characterized by the same gene expression and auxin accumulation phases [8, 9]. IBA is a natural precursor of indole-3-acetic acid (IAA), and both in intact hypocotyls and TCLs must be converted into IAA to promote AR-formation [7, 10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.