Abstract

One of the reasons that the deployment of network intrusion detection methods falls short is the lack of realistic labeled datasets, which makes it challenging to develop and compare techniques. It is caused by the large amounts of effort that it takes for a cyber expert to classify network connections. This has raised the need for methods that learn from both labeled and unlabeled data which observations are best to present to the human expert. Hence, Active Learning (AL) methods are of interest.In this paper, we propose a new hybrid AL method called Jasmine. Firstly, it uses the uncertainty score and anomaly score to determine how suitable each observation is for querying, i.e., how likely it is to enhance classification. Secondly, Jasmine introduces dynamic updating. This allows the model to adjust the balance between querying uncertain, anomalous and randomly selected observations. To this end, Jasmine is able to learn the best query strategy during the labeling process. This is in contrast to the other AL methods in cybersecurity that all have static, predetermined query functions. We show that dynamic updating, and therefore Jasmine, is able to consistently obtain good and more robust results than querying only uncertainties, only anomalies or a fixed combination of the two.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.