Abstract

The Jarzynski equality (JE) method, which relates the work of a nonequilibrium process to the free-energy difference between its initial and final states, provides an efficient way to calculate free energies of thermodynamic systems in simulations or experiments. However, more extensive applications of the JE are hindered by the requirement that the initial state must be in equilibrium. In this work we extend the JE method to be the Jarzynski matrix equality (JME) method, which relates the work of trajectories connecting metastable conformational regions to their local free energies, and thus we can estimate the free energy from the nonequilibrium trajectories starting from an almost arbitrary initial distribution. We then apply the JME to toy models, Lennard-Jones fluids, and polymer chain models, demonstrating its efficiency in free-energy calculations with satisfactory accuracy. The JME extends the applicability of the nonequilibrium methods to complex systems whose initial equilibrium states are difficult to reach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.