Abstract

Janus-type triskelion-shaped fluorophores comprising coumarins bearing various electron-donating substituents (1aad, 1add, 1ccd, and 1cdd) were successfully synthesized via an intramolecular Ullmann coupling. Density functional theory (DFT) calculations indicated that all the compounds presented two different molecular surfaces, similar to Janus-type molecules. The absorption and fluorescence spectra of asymmetrical derivatives 1aad, 1add, 1ccd, and 1cdd exhibited a bathochromic shift due to their narrow highest occupied molecular orbital (HOMO) -lowest unoccupied molecular orbital (LUMO) gap. Natural transition orbital (NTO) analysis indicated that the excited state orbital overlaps differ among the C3 symmetrical and asymmetrical dyes. These triskelion-shaped fluorophores were found to form molecular nanoaggregates in THF/H2O mixtures and demonstrated aggregation-induced emission (AIE) enhancement characteristics as a result of restricting their molecular inversion. These results indicate that Janus-type AIE fluorophores are potentially applicable as solid-state fluorescent chiral materials, which can be optimized by controlling their molecular rearrangement in the solid state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.