Abstract

Integration of hydrophobic and antibacterial functionalities into polyester-cotton blended (PTCO) textiles has attracted more attention but remains a challenge. Here, a Janus fabric with antibacterial effect, hydrophobicity, and enhanced moisture-permeability is fabricated using a "mist polymerization" approach. The PET fibers in the PTCO fabric are amino-functionalized through ammonolysis reactions of PET molecules with HDA, and mist treatments of poly lauryl methacrylate (PLMA) and poly(DMC-co-MA) (PDM) are applied on the two side surfaces of the PTCO-HDA fabric, respectively. The resulting Janus fabric exhibits an antibacterial rate of 99.9% against both E. coli and S. aureus, along with a hydrophobic property on its single side (PTCO-HDA@PLMA). Additionally, the establishment of a surface-free energy gradient across the fabric confers superior moisture-permeability to the Janus fabric, offering advantages in preserving textile comfort. Moreover, this approach does not significantly compromise the original fabric properties, such as mechanical strength, moisture permeability, and fabric softness. The proposed method offers a straightforward and scalable strategy for textile finishing, demonstrating great potential in expanding the application scope of PTCO fabrics, and it may hold a pivotal role in diverse applications, notably encompassing home textiles, wound dressings, and high-performance sportswear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.