Abstract

Uncontrolled hemorrhage is a major cause of potentially preventable death in civilian trauma nowadays. Considerable concern has been given to the development of efficient hemostats with high blood absorption, self-propelled property, and Ca2+ release ability, for irregularly shaped and noncompressible hemorrhage. Herein, Janus self-propelled chitosan-based hydrogel with CaCO3 (J-CMH@CaCO3 ) is developed by partial ionic crosslinking of carboxylated chitosan (CCS) and Ca2+ , gravity settlement, and photopolymerization, followed by removing the shell of CCS. The obtained J-CMH@CaCO3 is further used as a hemostat powered by the internal CaCO3 and coordinated protonated tranexamic acid (J-CMH@CaCO3 /T). Bubbles are generated and detached to provide the driving force, accompanied by the release of Ca2+ . The two aspects work in synergy to accelerate clot formation, endowing the J-CMH@CaCO3 /T with excellent hemostatic efficiency. The J-CMH@CaCO3 /T presents high blood absorption, favorable blood-clotting ability, desired erythrocyte and platelet aggregation, and acceptable hemocompatibility and cytocompatibility. In rodentand rabbitbleeding models, the J-CMH@CaCO3 /T exhibits the most effective hemostasis to the best knowledge of the authors, wherein the hemorrhage is rapidly halted within 39 s. It is believed that the J-CMH@CaCO3 /T with self-propelled property opens up a new avenue to design high-performance hemostats for clinical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.