Abstract

The in vitro activation of T cells by synthetic particles is a promising technique for adoptive cancer immunotherapy. While it is known that cell-surface receptors form clusters during T cell activation, the use of clustered ligands on synthetic particles to modulate T cell response is a largely unexplored concept. Building upon our previous finding that T cells respond differently to various micro-sized patterns of ligands, we here investigate the effect of nano-sized ligand clusters on T cell activation. Two-faced Janus nanoparticles were fabricated to display ligands of different functions in spatially segregated clusters on single nanoparticles. Going beyond our earlier qualitative study, here we precisely quantified and controlled the surface density and the total amount of ligands on single nanoparticles. We show that nanoparticles with clustered ligands activate T cells to a greater level than ones uniformly coated with the same number of ligands. The enhanced effect is due to increased local surface density of ligands. The results demonstrate that the spatial arrangement of ligands on particles influences activation response of T cells and may be used as a new strategy to increase T cell stimulation in the presence of insufficient amount of stimuli. This fundamental study also represents an initial step in using nanoscale Janus particles for manipulating immune cell responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.