Abstract

Due to the asymmetrical structure in the vertical direction, Janus two-dimensional (2D) monolayer (ML) materials possess some unique physical properties, holding great promise for nanoscale devices. In this paper, based on the newly discovered MoA2Z4 (A = Si, Ge; Z = N, P, As) ML, we propose a class of 2D Janus MoAZ3H ML materials with good stability and excellent mechanical properties using first-principles calculations. We demonstrate that the novel Janus MoAZ3H ML materials are all semiconductors with bandgaps ranging from 0.69 to 2.44 eV, giving rise to good absorption in the visible light region. Especially, both MoSiN3H and MoGeN3H MLs can be used as catalysts for producing hydrogen through water splitting. This catalytic property is much more efficient than that of the MoA2Z4 ML, attributed to the intrinsic electric field induced by the vertical asymmetry effectively separating electrons and holes. More importantly, the carrier mobility of the MoAZ3H ML is up to 103-104 cm2 V-1 s-1 due to the large elastic modulus or small effective mass. Additionally, the electronic properties of the MoAZ3H ML can be easily tuned by strain. Our results suggest a new strategy for designing novel 2D Janus materials, which not only expands the members in the 2D MA2Z4-based Janus family, but also provide candidates with excellent performances in photovoltaic and catalytic fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.