Abstract

AbstractRecent strides in micro‐ and nanofabrication technologies have enabled researchers to design and develop micro‐ and nanoscale robotic systems with enhanced power, functionality, and versatility. Because of their capability of remote actuation and navigation, synthetic micro‐ and nanomotors powered by oscillating magnetic fields have recently gained considerable attention. In this article, a new type of magnetic surface walker that can achieve speeds of up to 18.6 µm s−1 (≈4 body length s−1) in an oscillating magnetic field operated at 25 Hz and ≈2.7 mT is reported. Two magnetic Janus microspheres spontaneously form a microdimer via magnetic dipolar interactions, and this microdimer rolls its two “feet” back and forth in an alternating fashion. In addition to propulsion, the oscillating magnetic field can also precisely steer these surface walkers through complicated structures, and an extensive discussion of their performance in various experimental conditions is provided. The reported propulsion mechanism opens new possibilities for the design of remotely actuated microrobots for a wide range of applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call