Abstract

Janus gold nanostar-mesoporous silica nanoparticle (AuNSt-MSNP) nanodevices able to release an entrapped payload upon irradiation with near infrared (NIR) light were prepared and characterized. The AuNSt surface was functionalized with a thiolated photolabile molecule (5), whereas the mesoporous silica face was loaded with a model drug (doxorubicin) and capped with proton-responsive benzimidazole-β-cyclodextrin supramolecular gatekeepers (N 1). Upon irradiation with NIR-light, the photolabile compound 5 photodissociated, resulting in the formation of succinic acid, which induced the opening of the gatekeeper and cargo delivery. In the overall mechanism, the gold surface acts as a photochemical transducer capable of transforming the NIR-light input into a chemical messenger (succinic acid) that opens the supramolecular nanovalve. The prepared hybrid nanoparticles were non-cytotoxic to HeLa cells, until they were irradiated with a NIR laser, which led to intracellular doxorubicin release and hyperthermia. This induced a remarkable reduction in HeLa cells viability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call