Abstract
Bi2 O3 /rare earth oxide biphasic absorbers are attractive for high-efficiency X-ray shielding due to the complementary X-ray absorption effects. However, its application is severely hindered by poor interphasic contact. Here, a new Janus interface engineering strategy is reported for the construction of continuous and flexible Bi2 O3 /Gd2 O3 crystal nanofibrous membranes (FJNMs) with micro/nano dual self-strengthening interphasic adhesion. This strategy facilitates online micro-interlocking between Bi2 O3 /Gd2 O3 nanofibers and in situ nano-grain fusion between Bi2 O3 /Gd2 O3 crystals, significantly enhancing the adhesive strength at the Bi2 O3 /Gd2 O3 interface. Additionally, the synergistic shielding effect from Bi2 O3 /Gd2 O3 absorption and multiple reflections in Bi2 O3 and Gd2 O3 crystal lattices make the nanofibrous membranes a superior X-ray radiation barrier. The FJNMs demonstrate integrated features of exceptional X-ray shielding efficiency (91%-100%), robust interfacial adhesion (lap-shear strength >3.8MPa), prominent flexibility, lightweight, and outstanding breathability. The design concepts of fibrosing biphasic absorber assemblies pave the way for asymmetrically assembling biphasic materials, setting the stage for a fundamental shift in next-generation radiation shielding materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.