Abstract
Solar-driven water purification has been deemed as a cheap, green and renewable technology to mitigate water shortage and pollution. Herein, a biomass aerogel with hydrophilic-hydrophobic Janus structure has been prepared as solar water evaporator, which is achieved by partially modifying hydrothermal-treated loofah sponge (HLS) with reduced graphene oxide (rGO). It's a rare design philosophy that HLS serves as a substrate with large pores and hydrophilic properties to ensure continuous and effective water transport, and the hydrophobic layer with rGO modification guarantees good salt resistance in seawater desalination with high photothermal conversion efficiency. As a result, the obtained Janus aerogel, p-HLS@rGO-12, exhibits impressive solar-driven evaporation rates of 1.75 kg m-2h−1 and 1.54 kg m-2h−1 for pure water and seawater respectively, with good cycling stability in the evaporation process. Furthermore, p-HLS@rGO-12 also demonstrates outstanding photothermal degradation of rhodamine B (greater than98.8 % in 2 h) and sterilization of E. coli (nearly 100 % in 2 h). This work offers an unusual approach to achieve highly efficient solar-driven steam generation, seawater desalination, organic pollutant degradation, and water disinfection simultaneously. The prepared Janus biomass aerogel holds great potential application in the field of seawater desalination and wastewater purification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.