Abstract

Addressing the issue of inactive dead lithium deposition on the anode side remains a significant challenge for anode-free lithium metal batteries. While lithium compensation techniques can mitigate lithium depletion, directly introducing lithium compounds into the cathode material may degrade the electrode structure. Here the design and fabrication of a novel lithium replenishment separator (LRS) using a lithium compensation agent of Li2C4O4 is reported. The electrospun LRS demonstrates excellent ionic conductivity of 1.82 mS cm-1 and a high Li+ transference number of 0.51. Such a functionalized LRS not only provides additional active lithium for anode-free lithium metal batteries but also promotes uniform deposition of lithium metal. Compared with conventional polyolefin-based separators, the LRS effectively boosts LiFePO4||Cu anode-free batteries with enhanced cyclability. These results suggest this LRS strategy can find promising applications in next-generation anode-free batteries with high energy densities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.