Abstract

Bioreactors have been employed in tissue engineering to sustain longer and larger cell cultures, managing nutrient transfer and waste removal. Multiple designs have been developed, integrating sensor and stimulation technologies to improve cellular responses, such as proliferation and differentiation. The variability in bioreactor design, stimulation protocols, and cell culture conditions hampered comparison and replicability, possibly hiding biological evidence. This work proposes an open-source 3D printable design for a perfusion bioreactor and a numerical model-driven protocol development strategy for improved cell culture control. This bioreactor can simultaneously deliver capacitive-coupled electric field and fluid-induced shear stress stimulation, both stimulation systems were validated experimentally and in agreement with numerical predictions. A preliminary in vitro validation confirmed the suitability of the developed bioreactor to sustain viable cell cultures. The outputs from this strategy, physical and virtual, are openly available and can be used to improve comparison, replicability, and control in tissue engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.