Abstract

We investigate the jamming transition of frictional particulate systems via discrete element simulations, reporting the existence of new regimes, which are conveniently described in a jamming phase diagram with axes density, shear stress, and friction coefficient. The resulting jammed states are characterized by different mechanical and structural properties and appear not to be "fragile" as speculated. In particular, we find a regime, characterized by extremely long processes, with a diverging time scale, whereby a suspension first flows but then suddenly jams. We link this sudden jamming transition to the presence of impeded dilatancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.