Abstract

In this paper, the effect of jamming in free space optical (FSO) link, is evaluated by deriving closed-form expressions of the bit error rate (BER) and outage probability (OP) for single-input single-output (SISO) and multiple-input single-output (MISO) FSO systems. The effects of partial-band jamming and broadband jamming over the error performance of the considered FSO systems are also analyzed. The jammer behaves as a random noise source, following the negative exponential distribution-due to the atmospheric turbulence. Therefore, in the presence of jammer, the error performance of FSO systems is governed by the additive negative exponential noise. It is shown by a rigorous analysis that a MISO FSO system can significantly mitigate the effect of jamming. Specifically, we consider a $2\times 1$ FSO system for analysis, and demonstrate the improvement in BER and OP performance an FSO system can gain by using an additional spatial dimension, in the presence of a random jammer. The mitigation of jamming, due to implementation of arbitrary transmit apertures, is also verified through simulation results; which lies in complete agreement with the analytical results. Also, the error performance under the jamming effect is studied numerically over the Gamma-Gamma fading channel incorporated with pointing error effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call