Abstract
We consider the problem of jamming attack in a multiple access channel with training-based transmission. First, we derive upper and lower bounds on the maximum achievable ergodic sum-rate which explicitly shows the impact of jamming during both the training phase and the data transmission phase. Then, from the jammer's design perspective, we analytically find the optimal jamming energy allocation between the two phases that minimizes the derived bounds on the ergodic sum-rate. Numerical results demonstrate that the obtained optimal jamming design reduces the ergodic sum-rate of the legitimate users considerably in comparison to fixed power jamming.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.