Abstract

We consider security issues in remote state estimation of Cyber-Physical Systems (CPS). A sensor node communicates with a remote estimator through a wireless channel which may be jammed by an external attacker. With energy constraints for both the sensor and the attacker, the interactive decision making process of when to send and when to attack is studied. We formulate a game-theoretic framework and prove that the optimal strategies for both sides constitute a Nash equilibrium of a zero-sum game. To tackle the computation complexity issues, we present a constraint-relaxed problem and provide corresponding solutions using Markov chain theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.