7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.jmva.2005.08.011
Copy DOIJournal: Journal of Multivariate Analysis | Publication Date: Jul 11, 2006 |
Citations: 6 | License type: elsevier-specific: oa user license |
The least squares (LS) estimator seems the natural estimator of the coefficients of a Gaussian linear regression model. However, if the dimension of the vector of coefficients is greater than 2 and the residuals are independent and identically distributed, this conventional estimator is not admissible. James and Stein [Estimation with quadratic loss, Proceedings of the Fourth Berkely Symposium vol. 1, 1961, pp. 361–379] proposed a shrinkage estimator (James–Stein estimator) which improves the least squares estimator with respect to the mean squares error loss function. In this paper, we investigate the mean squares error of the James–Stein (JS) estimator for the regression coefficients when the residuals are generated from a Gaussian stationary process. Then, sufficient conditions for the JS to improve the LS are given. It is important to know the influence of the dependence on the JS. Also numerical studies illuminate some interesting features of the improvement. The results have potential applications to economics, engineering, and natural sciences.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.