Abstract

BackgroundBlood-brain barrier (BBB) impairment plays a significant role in the pathogenesis of sepsis-associated encephalopathy (SAE). However, the molecular mechanisms are poorly understood. In the present study, we aimed to investigate the regulatory relationship between the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway, microRNA (miR)-181b and its target genes in sepsis in vivo and in vitro.MethodsFour rat models (sham, sepsis, sepsis plus STAT3 inhibitor (Stattic), and sepsis plus miR-181b inhibitor [sepsis + anta-miR-181b]) were established. For the in vitro experiments, rat brain microvascular endothelial cells (rBMECs) and rat brain astrocytes (rAstrocytes) were cultured with 10% serum harvested from sham, sepsis, and sepsis + anta-miR-181b rats. Chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-QPCR) analysis was carried out to detect the binding and enrichment of the JAK/STAT3 signal core transcription complex in the miR-181b promoter region. Dual-luciferase reporter gene assay was conducted to test miR-181b and its target genes. The cell adhesion rate of rBMECs was also measured.ResultsDuring our investigations, the expression levels of miR-181b, p-JAK2, p-STAT3, and C/EBPβ were found to be significantly increased in the septic rats compared with the sham rats. STAT3 inhibitor halted BBB damage by downregulating the expression of miR-181b. In addition, miR-181b targeted sphingosine-1-phosphate receptor 1 (S1PR1) and neurocalcin delta (NCALD). The up-regulated miR-181b significantly decreased the cell adhesion rate of rBMECs. The administration of miR-181b inhibitor reduced damage to the BBB through increasing the expression of S1PR1 and NCALD, which again proved that miR-181b negatively regulates SIPR1 and NCALD to induce BBB damage.ConclusionsOur study demonstrated that JAK2/STAT3 signaling pathway induced expression of miR-181b, which promoted BBB impairment in rats with sepsis by downregulating S1PR1 and decreasing BBB cell adhesion. These findings strongly suggest JAK2/STAT3/miR-181b axis as therapeutic target in protecting against sepsis-induced BBB damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.