Abstract

The Pyrenees represent a natural laboratory for biogeographic, evolutionary and ecological research of mountain fauna as a result of the high variety of habitats and the profound effect of the glacial and interglacial periods. There is a paucity of studies providing a detailed insight into genetic processes and better knowledge on the patterns of genetic diversity and how they are maintained under high altitude conditions. This is of particular interest when considering the course of past climate conditions and glaciations in a species which is considered site tenacious, with long generation times. Here we analyzed the genetic patterns of diversity and structure of the endemic Pyrenean brook newt (Calotriton asper) along its distribution range, with special emphasis on the distinct habitat types (caves, streams, and lakes), and the altitudinal and geographical ranges, using a total set of 900 individuals from 44 different localities across the Pyrenean mountain range genotyped for 19 microsatellite loci. We found evidence for a negative longitudinal and positive altitudinal gradient of genetic diversity in C. asper populations. The fact that genetic diversity was markedly higher westwards is in accordance with other Pyrenean species. However, the impact of altitudinal gradient on the genetic diversity seems to differ from other species, and mostly from other amphibians. We found that lower altitudes can act as a barrier probably because the lowlands do not provide a suitable habitat for C. asper. Regarding the distinct habitat types, caves had significantly lower values of genetic diversity compared to streams or lakes. The mean FST value was relatively high (0.304) with maximum values as high as 0.771, suggesting a highly structured total population. Indeed, populations were grouped into five subclusters, the eastern populations (cluster 1) remained grouped into two subclusters and the central-western Pyrenees (cluster 2) into three subclusters. The increase of isolation with geographical distance is consistent with the population structure detected. In conclusion, C. asper seems to be adapted to high altitude mountain habitats, and its genetic diversity is higher in the western Pyrenees. In terms of conservation priority, we consider more relevant the populations that represent a reservoir of genetic diversity.

Highlights

  • Past and contemporary climate conditions have been the main drivers shaping the genetic population structure of species [1,2,3]

  • Our study aims to (i) characterize the genetic diversity of each C. asper population, (ii) analyze the genetic structure among its populations, (iii) determine whether the genetic patterns are related to a longitudinal and altitudinal gradient or to distinct habitat types, and (iv) whether mountains constitute a natural barrier between French and Iberian C. asper populations

  • Given that the average percentage of null allele frequency across loci (2.5%) is lower than 5%, and FST did not vary after excluding null alleles, all loci were kept for further statistical analyses

Read more

Summary

Introduction

Past and contemporary climate conditions have been the main drivers shaping the genetic population structure of species [1,2,3]. Across the various mountain ranges in Europe, glacial and postglacial periods have forced many species to go through severe processes of contraction and expansion, leading to repeated occurrences of colonization or recolonization. These range fluctuations form the basis of their current geographic distribution as well as their population genetic structure [1]. Climatic conditions in mountains are extreme, representing a considerable selection force, frequently leading to local extinction of populations. Mountain ranges are excellent areas to study the process of repeated colonization events after harsh climatic conditions, e.g. glacial periods during which many species have gone locally extinct or populations suffering from small population sizes as a consequence of unfavorable environmental conditions [6, 7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call