Abstract

Treatment of nickel(II) nitrate with the iridium(III) metalloligand fac-[Ir(apt)3] (apt = 3-aminopropanethiolate) gave the trinuclear complex [Ni{Ir(apt)3}2](NO3)3 ([1Ir](NO3)3), in which the nickel center has a formal oxidation state of +III. Chemical or electrochemical oxidation and reduction of [1Ir](NO3)3 generated the corresponding trinuclear complexes [Ni{Ir(apt)3}2](NO3)4 ([1Ir](NO3)4) and [Ni{Ir(apt)3}2](NO3)2 ([1Ir](NO3)2) with one-electron oxidated and reduced states, respectively. Single-crystal X-ray crystallography revealed that the nickel center in [1Ir](NO3)3 is situated in a highly distorted octahedron due to Jahn-Teller effect, while the nickel center in each of [1Ir](NO3)4 and [1Ir](NO3)2 adopts a normal octahedral geometry. Crystals of [1Ir](NO3)3·2H2O are dehydrated on heating while retaining their single-crystallinity. The dehydration induces temperature-dependent dynamic disorder of the Jahn-Teller distortion at the nickel(III) center, which is largely quenched upon rehydration of the crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call