Abstract
We present a theoretical study of a possibility of superconductivity in a three dimensional molecular conductor in which the interaction between electrons in doubly degenerate molecular orbitals and an {\em intra}molecular vibration mode is large enough to lead to the formation of $E\otimes \beta$ Jahn-Teller small polarons. We argue that the effective polaron-polaron interaction can be attractive for material parameters realizable in molecular conductors. This interaction is the source of superconductivity in our model. On analyzing superconducting instability in the weak and strong coupling regimes of this attractive interaction, we find that superconducting transition temperatures up to 100 K are achievable in molecular conductors within this mechanism. We also find, for two particles per molecular site, a novel Mott insulating state in which a polaron singlet occupies one of the doubly degenerate orbitals on each site. Relevance of this study in the search for new molecular superconductors is pointed out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.