Abstract

We present JADES JWST/NIRSpec spectroscopy of GN-z11, the most luminous candidate z > 10 Lyman break galaxy in the GOODS-North field with MUV = −21.5. We derive a redshift of z = 10.603 (lower than previous determinations) based on multiple emission lines in our low and medium resolution spectra over 0.7 − 5.3 μm. We significantly detect the continuum and measure a blue rest-UV spectral slope of β = −2.4. Remarkably, we see spatially extended Lyman-α in emission (despite the highly neutral intergalactic medium expected at this early epoch), offset 555 km s−1 redwards of the systemic redshift. From our measurements of collisionally excited lines of both low and high ionisation (including [O II] λ3727, [Ne III] λ3869, and C III] λ1909), we infer a high ionisation parameter (log U ∼ −2). We detect the rarely seen N IV] λ1486 and N III] λ1748 lines in both our low and medium resolution spectra, with other high ionisation lines seen in the low resolution spectrum, such as He II (blended with O III]) and C IV (with a possible P-Cygni profile). Based on the observed rest-UV line ratios, we cannot conclusively rule out photoionisation from an active galactic nucleus (AGN), although the high C III]/He II and N III]/He II ratios are compatible with a star formation explanation. If the observed emission lines are powered by star formation, then the strong N III] λ1748 observed may imply an unusually high N/O abundance. Balmer emission lines (Hγ, Hδ) are also detected, and if powered by star formation rather than an AGN, we infer a star formation rate of ∼20 − 30 M⊙ yr−1 (depending on the initial mass function) and low dust attenuation. Our NIRSpec spectroscopy confirms that GN-z11 is a remarkable galaxy with extreme properties seen 430 Myr after the Big Bang.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call