Abstract

Abstract —This study presents an overview of the systematic petrography, mineralogy, and geochemistry of jadeitite and jadeite-rich rocks found as blocks in the serpentinite mélanges of the Rio San Juan Complex (RSJC) of the northern Dominican Republic. The RSJC is one of the remnants of the subduction/accretionary complex of the Great Caribbean Arc that once spanned the gap between North and South America, moved relatively eastward to its present position as the Lesser Antilles island arc, and left collisional fragments along the two continental margins. Our systematic collection of heterogeneous samples ranges from jadeitite s.str. (sensu stricto) with ≥90 vol.% jadeite to quartz-rich rocks with jadeite and lawsonite. Two suites of rock types can be recognized. In the matrix-quartz-free rock suite, albite is the principal vein-filling or interstitial phase. Quartz is present only as inclusions in the cores of some jadeite crystals. In the matrix-quartz-bearing rock suite, quartz is abundant and albite is relatively rare. The first-order question concerning jadeite-rich rocks is whether jadeite precipitated from a high-pressure aqueous fluid (“vein precipitation” or “P-type”) or whether the jadeite-rich rock formed through comprehensive metasomatic replacement of an igneous protolith (“R-type”). Some examples occur as discordant veins and are clearly P-type. For most, however, classification has been equivocal. The systematic data on the petrography and whole-rock chemistry of jadeite rocks from the RSJC presented in this paper leads to significant clarification. A major argument against R-type genesis is that the metasomatic mass transfer required to produce jadeitite and jadeite-rich rocks from any normal igneous protolith is prohibitively complex. Using whole-rock, major-element compositions, we show that many members of the matrix-quartz-bearing rock suite from the RSJC can be derived by isochemical HP/LT metamorphism of normal oceanic plagiogranites subducted together with oceanic crust. Isocon analysis shows, furthermore, that more jadeite-rich rock types and also members of the matrix-quartz-free suite can be derived from such plagiogranites primarily by straightforward desilication, a realistic scenario in a serpentine-rich environment. The quartz inclusions found in jadeite crystals of the matrix-quartz-free suite corroborate a genetic path in which the plagioclase in a plagiogranite protolith reacts to jadeite + quartz. Later desilication and the formation of albite in the Si-undersaturated rock matrix leave tell-tale quartz inclusions as relics in jadeite crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.