Abstract

In this paper we prove Jacobi’s bound for systems of n partial differential polynomials in n differential variables, which are independent over a prime differential ideal . This generalizes on the one hand our result (Kondratieva et al. in On Jacobi’s bound for systems of differential polynomials, algebra. Moscow University Press, Moscow, pp 79–85, 1982) about Jacobi’s bound for ordinary differential polynomials independent over a prime differential ideal and, on the other hand, the result by Tomasovic (A generalized Jacobi conjecture for arbitrary systems of algebraic differential equations. PhD thesis, Columbia University, 1976), who proposed a version of Jacobi’s bound for partial differential polynomials and proved it in the linear case. In Kondratieva et al. (Differential and difference dimension polynomials, Kluwer, Dordrecht, 1999) we gave another proof of this result by Tomasovic. The exposition in the present paper follows our proof in Kondratieva et al. (Differential and difference dimension polynomials, Kluwer, Dordrecht, pp 273–280, 1999).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.