Abstract

We present a novel predictor-corrector method, called Jacobian-predictor-corrector approach, for the numerical solutions of fractional ordinary differential equations, which are based on the polynomial interpolation and the Gauss-Lobatto quadrature w.r.t. the Jacobi-weight function $\omega (s)=(1-s)^{\alpha -1} (1+s)^{0}$ . This method has the computational cost O(N E ) and the convergent order N I , where N E and N I are, respectively, the total computational steps and the number of used interpolation points. The detailed error analysis is performed, and the extensive numerical experiments confirm the theoretical results and show the robustness of this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.