Abstract
Artificial Intelligence (AI) and the constant paradigm shift in road traffic have led to a need for significant improvement in road safety to minimize traffic accidents. LiFi helps minimize accidents by transmitting data between multiple vehicles (i.e. Vehicle-to-Vehicle (V2V)) and between vehicles and infrastructure (i.e. Vehicle-to-Infrastructure (V2I)) without interference. LiFi uses light to transmit data between devices or vehicles, which ensures efficient data transmission speed and is therefore considered a safe technology. A method called Deep Jacobian Regression and Tate Bryant Euler Recommendation (DJR-TBER) is proposed in this paper based on V2V and V2I autonomous vehicle communication. The proposed method DJR-TBER consists of an input layer, four hidden layers and finally an output layer. Sensors are first used to obtain the information. A linear regression-based speed evaluation model is developed and followed by a Jacobi matrix-based distance evaluation model in the hidden layer. The third hidden layer by developing a distance evaluation model. The use of Laplacian function ensures secure V2I communication for the autonomous vehicle. Finally, a Tate-Bryant-Euler angle-based model for emergency handling is proposed in the hidden layer to optimally consider the aspect of braking in emergency situations and thus increase driving safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.