Abstract

We describe an approach to coronagraphic focal-plane wavefront control that utilizes gradient-based nonlinear optimization along with analytical gradients obtained with algorithmic differentiation to find deformable mirror solutions. In addition to eliminating the cost of calculating a high-dimensional finite-difference Jacobian matrix, we show that this approach leads to improved asymptotic computational efficiency. With very high-actuator deformable mirrors such as the 128 × 128 actuators baselined for the Large UV/Optical/IR Surveyor mission concept, the proposed algorithm reduces memory consumption by approximately 95 % compared to a Jacobian-based algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.