Abstract

The Jacobian consistency of smoothing functions plays an important role for achieving the rapid convergence of Newton methods or Newton-like methods with an appropriate parameter control. In this paper, we study the properties, derive the computable formula for the Jacobian matrix and prove the Jacobian consistency of a one-parametric class of smoothing Fischer–Burmeister functions for second-order cone complementarity problems proposed by Tang et al. (Comput Appl Math 33:655–669, 2014). Then we apply its Jacobian consistency to a smoothing Newton method with the appropriate parameter control presented by Chen et al. (Math Comput 67:519–540, 1998), and show the global convergence and local quadratic convergence of the algorithm for solving the SOCCP under rather weak assumptions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call