Abstract
We study the Rikitake system through the method of differential geometry, i.e. Kosambi–Cartan–Chern (KCC) theory for Jacobi stability analysis. For applying KCC theory we reformulate the Rikitake system as two second-order nonlinear differential equations. The five KCC invariants are obtained which express the intrinsic properties of nonlinear dynamical system. The deviation curvature tensor and its eigenvalues are obtained which determine the stability of the system. Jacobi stability of the equilibrium points is studied and obtain the conditions for stability. We study the dynamics of Rikitake system which shows the chaotic behaviour near the equilibrium points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.