Abstract

Jacobi polynomials were introduced by Ozeki in analogy with Jacobi forms of lattices. They are useful to compute coset weight enumerators, and weight enumerators of children. We determine them in most interesting cases in length at most 32, and in some cases in length 72. We use them to construct group divisible designs, packing designs, covering designs, and (t,r)-designs in the sense of Calderbank-Delsarte. A major tool is invariant theory of finite groups, in particular simultaneous invariants in the sense of Schur, polarization, and bivariate Molien series. A combinatorial interpretation of the Aronhold polarization operator is given. New rank parameters for spaces of coset weight distributions and Jacobi polynomials are introduced and studied here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call