Abstract
We define Jacobi forms over a totally real algebraic number field K and construct examples by first embedding the group and the space into the symplectic group and the symplectic upper half space respectively. Then symplectic modular forms are created and Jacobi forms arise by taking the appropriate Fourier coefficients. Also some known relations of Jacobi forms to vector valued modular forms over rational numbers are extended to totally real fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.