Abstract
In this work, the KdV equation with conformable derivative and dual-power law nonlinearity is considered. It is exceedingly used as a model to depict the feeble nonlinear long waves in different fields of sciences. Furthermore, it explains the comparable effects of weak dispersion and weak nonlinearity on the evolvement of the nonlinear waves. Using the Jacobi elliptic function expansion method, new exact solutions of that equation have been found. As results, some obtained solutions behave as periodic traveling waves, bright soliton, and dark soliton.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied and Computational Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.