Abstract
In this paper, Jacobi stability of a segmented disc dynamo system is geometrically investigated from viewpoint of Kosambi–Cartan–Chern (KCC) theory in Finsler geometry. First, the geometric objects associated to the reformulated system are explicitly obtained. Second, the Jacobi stability of equilibria and a periodic orbit are discussed in the light of deviation curvature tensor. It is shown that all the equilibria are always Jacobi unstable for any parameters, a Lyapunov stable periodic orbit falls into both Jacobi stable regions and Jacobi unstable regions. The considered system is not robust to small perturbations of the equilibria, and some fragments of the periodic orbit are included in fragile region, indicating that the system is extremely sensitive to internal parameters and environment. Finally, the dynamics of the deviation vector and its curvature near all the equilibria are presented to interpret the onset of chaos in the dynamo system. In a physical sense, magnetic fluxes and angular velocity can show irregular oscillations under some certain cases, these oscillations may reveal the irregularity of magnetic field’s evolution and reversals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.