Abstract
In this paper jackknifing technique is examined for functions of the parametric component in a partially linear regression model with serially correlated errors. By deleting partial residuals a jackknife-type estimator is proposed. It is shown that the jackknife-type estimator and the usual semiparametric least-squares estimator (SLSE) are asymptotically equivalent. However, simulation shows that the former has smaller biases than the latter when the sample size is small or moderate. Moreover, since the errors are correlated, both the Tukey type and the delta type jackknife asymptotic variance estimators are not consistent. By introducing cross-product terms, a consistent estimator of the jackknife asymptotic variance is constructed and shown to be robust against heterogeneity of the error variances. In addition, simulation results show that confidence interval estimation based on the proposed jackknife estimator has better coverage probability than that based on the SLSE, even though the latter uses the information of the error structure, while the former does not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.