Abstract

We study random partitions $\lambda=(\lambda_1,\lambda_2,\dots,\lambda_d)$ of $n$ whose length is not bigger than a fixed number $d$. Suppose a random partition $\lambda$ is distributed according to the Jack measure, which is a deformation of the Plancherel measure with a positive parameter $\alpha>0$. We prove that for all $\alpha>0$, in the limit as $n \to \infty$, the joint distribution of scaled $\lambda_1,\dots, \lambda_d$ converges to the joint distribution of some random variables from a traceless Gaussian $\beta$-ensemble with $\beta=2/\alpha$. We also give a short proof of Regev's asymptotic theorem for the sum of $\beta$-powers of $f^\lambda$, the number of standard tableaux of shape $\lambda$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.