Abstract
Complex dual hesitant fuzzy set (CDHFS) is a combination of two modifications, called complex fuzzy set (CFS) and dual hesitant fuzzy set (DHFS). CDHFS makes two degrees, called membership valued and nonmembership valued in the form of a finite subset of a unit disc in the complex plane, and is a capable method to solve uncertain and unpredictable information in real-life problems. The goal of this study is to describe the notion of CDHFS and its operational laws. The novel approach of the complex interval-valued dual hesitant fuzzy set (CIvDHFS) and its fundamental laws are also described and defended with the help of an example. Further, the vector similarity measures (VSMs), weighted vector similarity measures (WVSMs), hybrid vector similarity measure, and weighted hybrid vector similarity measure are additionally explored. These similarity measures (SM) are applied to the environment of pattern recognition and medical diagnosis to assess the capability and feasibility of the interpreted measures. We additionally solved some numerical examples utilizing the established measures. We examine the dependability and validity of the proposed measures by comparing them with some existing measures. The advantages, comparative analysis, and graphical portrayal of the investigated interpreted measures and existing measures are additionally described in detail.
Highlights
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.