Abstract

In an attempt to understand the effects of SiC addition on the pinning behavior for the in-situ PIT MgB2 tape wire, field and temperature dependencies on critical current density, Jc and the pinning force were studied by considering applied magnetic field direction for the rectangular-shaped wire. As a result, it was clarified that the SiC-doped wire has the equiaxial pinning center and the un-doped wire has the inequi-axial pining center. Taking the pinning scaling law into account, it is found that the SiC-doped MgB2 wire has two kinds of the pinning center and the dominant pinning center changes with temperature, that is, the pinning centers are the grain boundary and the precipitates at high and low temperatures, respectively. The un-doped MgB2 wire is assumed to have anisotropy of the pinning mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.