Abstract

In the spirit of GE/EPRI fracture mechanics procedure, estimation schemes for the crack driving force for circumferentially and axially surface-cracked pressurized elbows subjected to bending are developed. These schemes are based on the results of line-spring/shell model. The line-spring/shell model offers an attractive and inexpensive alternative to performing a large number of analyses of surface-cracked structures. This model has been shown to provide accurate predictions in comparison with the more involved three-dimensional model by Mohan (1998). Using the results of this model and following the GE/EPRI procedure, the coefficient functions, F1 and h1, which provide the necessary information for predicting the crack driving force in cracked elbows, for several elbow and crack geometries are tabulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.