Abstract

Leak-before-break (LBB) assessment of primary heat transport piping of nuclear reactors involves detailed fracture assessment of pipes and elbows with postulated throughwall cracks. Fracture assessment requires the calculation of elastic-plastic J-integral and crack opening displacement (COD) for these piping components. Analytical estimation schemes to evaluate elastic-plastic J-integral and COD simplify the calculations. These types of estimation schemes are available for pipes with various crack configurations subjected to different types of loading. However, no such schemes are available for throughwall circumferentially cracked elbow (or pipe bend), an important component for LBB analysis. In this paper, simple J and COD estimation schemes are proposed for throughwall circumferentially cracked elbow subjected to closing bending moment. The ovalisation of elbow cross section has a significant bearing on its fracture behavior. Therefore, unlike conventional deformation theory plasticity analysis, incremental flow theory is adopted considering both material and geometric non-linearities in the development of the proposed estimation schemes. Although it violates Ilyushin’s theorem, it has been shown that the resulting estimation schemes is still reasonably accurate for engineering purposes. Finally, experimental/numerical validation has been provided by comparing the J-integral and COD between numerical/test data and predictions of the proposed estimation schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call