Abstract

With the continuous development of organic materials for optoelectronic devices and biological applications, J-aggregation has attracted a great deal of interest in both dye chemistry and supramolecular chemistry. Except for the characteristic red-shifted absorption and emission, such ordered head-to-tail stacked structures may be accompanied by special properties such as enhanced absorption, narrowed spectral bandwidth, improved photothermal and photodynamic properties, aggregation-induced emission enhancement (AIEE) phenomenon, and so forth. These excellent properties add great potential to J-aggregates for optical imaging and phototherapy in the near-infrared (NIR) region. Despite decades of development, the challenge of rationally designing the molecular structure to adjust intermolecular forces to induce J-aggregation of organic dyes remains significant. In this review, we discuss the formation of J-aggregates in terms of intermolecular interactions and summarize some recent studies on J-aggregation dyes for NIR imaging and phototherapy, to provide a clear direction and reference for designing J-aggregates of near-infrared organic dyes to better enable biological applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call